Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(39): 19311-19317, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501321

RESUMO

Dimethylsulfide (DMS), a gas produced by marine microbial food webs, promotes aerosol formation in pristine atmospheres, altering cloud radiative forcing and precipitation. Recent studies suggest that DMS controls aerosol formation in the summertime Arctic atmosphere and call for an assessment of pan-Arctic DMS emission (EDMS) in a context of dramatic ecosystem changes. Using a remote sensing algorithm, we show that summertime EDMS from ice-free waters increased at a mean rate of 13.3 ± 6.7 Gg S decade-1 (∼33% decade-1) north of 70°N between 1998 and 2016. This trend, mostly explained by the reduction in sea-ice extent, is consistent with independent atmospheric measurements showing an increasing trend of methane sulfonic acid, a DMS oxidation product. Extrapolation to an ice-free Arctic summer could imply a 2.4-fold (±1.2) increase in EDMS compared to present emission. However, unexpected regime shifts in Arctic geo- and ecosystems could result in future EDMS departure from the predicted range. Superimposed on the positive trend, EDMS shows substantial interannual changes and nonmonotonic multiyear trends, reflecting the interplay between physical forcing, ice retreat patterns, and phytoplankton productivity. Our results provide key constraints to determine whether increasing marine sulfur emissions, and resulting aerosol-cloud interactions, will moderate or accelerate Arctic warming in the context of sea-ice retreat and increasing low-level cloud cover.


Assuntos
Aerossóis/análise , Atmosfera/análise , Água do Mar/análise , Sulfetos/análise , Regiões Árticas , Clima , Ecossistema , Camada de Gelo , Mesilatos/análise , Mesilatos/metabolismo , Oceanos e Mares , Fitoplâncton/metabolismo , Estações do Ano , Sulfetos/metabolismo
2.
Environ Microbiol ; 20(11): 4157-4169, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30246477

RESUMO

Dimethylsulfide (DMS), a dominant organic sulfur species in the surface ocean, may act as a signalling molecule and contribute to mutualistic interactions between bacteria and marine algae. These proposed functions depend on the DMS concentration in the vicinity of microorganisms. Here, we modelled the DMS enrichment at the surface of DMS-releasing marine algal cells as a function of DMS production rate, algal cell radius and turbulence. Our results show that the DMS concentration at the surface of unstressed phytoplankton with low DMS production rates can be enriched by <1 nM, whereas for mechanically stressed algae with high activities of the enzyme DMSP-lyase (a coccolithophore and a dinoflagellate) DMS cell surface enrichments can reach ~10 nM, and could potentially reach µM levels in large cells. These DMS enrichments are much higher than the median DMS concentration in the surface ocean (1.9 nM), and thus may attract and support the growth of bacteria living in the phycosphere. The bacteria in turn may provide photoactive iron chelators (siderophores) that enhance algal iron uptake and provide algal growth factors such as auxins and vitamins. The present study highlights new insights on the extent and impact of microscale DMS enrichments at algal surfaces, thereby contributing to our understanding of the potential chemoattractant and mutualistic roles of DMS in marine microorganisms.


Assuntos
Haptófitas/metabolismo , Fitoplâncton/metabolismo , Sulfetos/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Diatomáceas/enzimologia , Diatomáceas/genética , Diatomáceas/metabolismo , Dinoflagellida/enzimologia , Dinoflagellida/genética , Dinoflagellida/metabolismo , Ecossistema , Haptófitas/enzimologia , Haptófitas/genética , Ferro/metabolismo , Fitoplâncton/enzimologia , Fitoplâncton/genética , Água do Mar/microbiologia , Água do Mar/parasitologia , Sideróforos/metabolismo , Sulfetos/análise
3.
Environ Sci Technol ; 50(24): 13361-13370, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993080

RESUMO

Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m3 (mol quanta)-1). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m3 (mol quanta)-1. The largest AQY(330), up to 34 m3 (mol quanta)-1), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d-1), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.


Assuntos
Fotodegradação , Fotólise , Nitratos , Oceanos e Mares
4.
J Phycol ; 52(2): 239-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27037589

RESUMO

Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton.


Assuntos
Organismos Aquáticos/citologia , Organismos Aquáticos/fisiologia , Metabolismo Energético , Fitoplâncton/citologia , Fitoplâncton/fisiologia , Organismos Aquáticos/efeitos dos fármacos , Carboidratos/farmacologia , Carbono/metabolismo , Metabolismo Energético/efeitos dos fármacos , Flagelos , Íons , Minerais/metabolismo , Movimento , Nitrogênio/deficiência , Fitoplâncton/efeitos dos fármacos , Dióxido de Silício/farmacologia , Compostos de Sulfônio/farmacologia
5.
Nature ; 428(6982): 549-53, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15058302

RESUMO

Iron supply has a key role in stimulating phytoplankton blooms in high-nitrate low-chlorophyll oceanic waters. However, the fate of the carbon fixed by these blooms, and how efficiently it is exported into the ocean's interior, remains largely unknown. Here we report on the decline and fate of an iron-stimulated diatom bloom in the Gulf of Alaska. The bloom terminated on day 18, following the depletion of iron and then silicic acid, after which mixed-layer particulate organic carbon (POC) concentrations declined over six days. Increased particulate silica export via sinking diatoms was recorded in sediment traps at depths between 50 and 125 m from day 21, yet increased POC export was not evident until day 24. Only a small proportion of the mixed-layer POC was intercepted by the traps, with more than half of the mixed-layer POC deficit attributable to bacterial remineralization and mesozooplankton grazing. The depletion of silicic acid and the inefficient transfer of iron-increased POC below the permanent thermocline have major implications both for the biogeochemical interpretation of times of greater iron supply in the geological past, and also for proposed geo-engineering schemes to increase oceanic carbon sequestration.


Assuntos
Clima Frio , Ferro/metabolismo , Fitoplâncton/fisiologia , Água do Mar/microbiologia , Alaska , Carbono/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Ferro/análise , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimento , Ácido Silícico , Dióxido de Silício , Fatores de Tempo
6.
J Phycol ; 36(3): 484-496, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29544011

RESUMO

A 7-day mesocosm experiment was conducted in July 1996 to investigate the effects of ambient UV-B radiation (UVBR) exclusion and two UVBR enhancements above ambient levels on NO3- , NH4+ and urea utilization in a natural plankton community (<240 µm) from the Lower St. Lawrence Estuary. The phytoplankton community was dominated by diatoms during the first 3 days and, afterward, by flagellates and dinoflagellates. The results of 4-h incubations just below the water surface show that, compared with ambient UVBR conditions, UVBR exclusion generally increased NO3- , NH4+ , and urea uptakes. During the last 4 days of the experiment, the percent increase in the specific uptake rate of urea under excluded UVBR conditions varied between 17% and 130% and was a linear function of the ambient UVBR dose removed. During the first 3 days, the phytoplankton community dominated by diatoms was able to withstand UVBR enhancements without any perceptible effect on nitrogen uptake. However, during the post-diatom bloom period, UVBR enhancements resulted in decreases in NO3- , NH4+ , and urea uptake compared with ambient UVBR conditions. The reduction of urea uptake under UVBR enhancements during the last 3 days varied between 23% and 64% and was linearly related to the enhanced UVBR dose. However, the different UVBR treatments did not affect the internal organic nitrogen composition (internal urea, free amino acids, and proteins) of the phytoplankton community experiencing vertical mixing in the mesocosms. The discrepancy between short-term uptake measurements at the surface and long-term effects in the mesocosms emphasizes the importance of vertical mixing on UVBR effects in natural ecosystems. This suggests that an increase in ambient UVBR would have a minimal effect on nitrogen utilization by natural phytoplankton assemblages if these are vertically mixed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...